UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Microwave cavities

Physics 401, Fall 2016 Eugene V. Colla

illinois.edu

Agenda

- Waves in waveguides
- Standing waves and resonance
- Setup
- Experiment with microwave cavity
- Comments on Bragg diffraction experiment

Reminder: Propagation of Plane Waves

Wave Propagation in Wave Guides

Standing Waves in Cavities

Standing Waves in Cavities

Resonances for transverse Electric Waves

$$\omega_{mnp}^{2} = v_{0}^{2} \left[\left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{2} + \left(\frac{p\pi}{c} \right)^{2} \right]$$

 v_0^2 -phase velocity

TE₁₀₁ mode: m=1, n=0, p=1

$$\omega_{101}^2 = v_0^2 \pi^2 \left[\left(\frac{1}{a}\right)^2 + \left(\frac{1}{c}\right)^2 \right]$$

Equivalent Circuit

Coupling between Wave Guide and Cavity

Maximum power transfer: $Z_0 = R \rightarrow \beta = 1$

$$\Rightarrow Q_L = \frac{1}{2}Q_0 ,$$

 Q_0 - quality factor without external load

Microwaves in Cavities. Overview of the Experiment.

Gunn diode MW oscillator

illinois.edu

Microwaves in Cavities. The Setup of the Experiment.

Experiment. Wavelength measurement.

Use detector to find distance between minimums in the slotted line (wave guide)

Experiment. Wavelength measurement.

Use detector to find distance between minimums in the slotted line (wave guide). Distance between consequent minima correspond $\lambda/2$

$$\omega_{102}^2 = v_0^2 \pi^2 \left[\left(\frac{1}{a}\right)^2 + \left(\frac{2}{c}\right)^2 \right] \qquad \longrightarrow \qquad f_{102} = \frac{v_0}{2} \sqrt{\left[\left(\frac{1}{a}\right)^2 + \left(\frac{2}{c}\right)^2 \right]}$$

- 1. Oscilloscope should run in X-Y mode
- 2. To plot the I(f) dependence you have to download both Ch1 and Ch2 data
- 3. Use triangular waveform as a voltage applied to modulation input of the oscillator
- 4. Use a proper time scale setting on the scope which could estimated from scanning frequency
- 5. Apply the calibration equation to calculate the frequency of the oscillator from the modulation voltage

-		<u> </u>	"2 "1 "P I L	· · · · · · · ·			
1		A(X)	B(Y)	C(Y)	D(Y)	E(Y) 💩	
	Long Name	time	1	time	Vmod	f	
	Units	s	A	S	V	GHz	
	1	0	****	0	3.85055	3.0776	
	2	1E-6	****	1E-6	3.84992	3.07758	
	3	2E-6	****	2E-6	3.84578	3.07742	
	4	3E-6	*****	3E-6	3.84297	3.07732	
						<i>f</i> =	$= 0.03706 V_{mod} + 2.9349$

Voltage tunable oscillator ZX95-3250a-S+ from

Mini-Circuits[®]

FM Calibration for microwave oscillator

ZX95-3250a-S+

0/31/2016

illinois.edu

By changing of the coupling between oscillator and cavity we can control the quality factor of the cavity resonance but in the same time we changing the power delivered to the cavity

Experiment. Coupling: Detecting of the Magnetic field.

While in resonance: turn orientation of the input loop from the vertical direction in 10° steps to 360°. Read cavity detector.

Experiment. Coupling: Detecting of the Magnetic field.

10/31/2016

Electric Field Distribution.

Presence of dielectric reduces length of cavity at a given resonance frequency ω_0 .

This effect grows with the electric field strength E_y.

- (0) Without dielectric the cavity length at resonace is c_0 .
- (1) Place dielectric into cavity and move in 0.5cm steps, I_{i} .
- (2) At each place tune plunger to resonance and record c_i .
- (3) Plot $\Delta c_i = |c_0 c_i|$ versus I_i : this measures now E_y vs I!

Electric Field Distribution.

Courtesy of P. Debevec

Calculation of the Quality factor of the Unloaded Cavity

Quality factor (TE₁₀₁ mode) of unloaded cavity can be calculated as:

$$Q_0 = \frac{abc(a^2 + c^2)}{\delta \left[2b(a^3 + c^3) + ac(a^2 + c^2)\right]}$$

 δ is the skin depth at frequency ω_{0}

$$\delta = \sqrt{2\rho / \mu \omega}$$

ρ – resistivity of the cavity material μ=μ_rμ₀≈μ₀=4πx10⁻⁷

Calculation of the Quality factor of the **Unloaded Cavity**

For red brass $\rho = 6 \times 10^{-8} \Omega m$ µ≈4π**x**10⁻⁷

$$\delta = \sqrt{2\rho / \mu \omega}$$

δ=2.25x10⁻⁶m

a=7.22 cm, b=3.42 cm, c=6.91 cm (TE₁₀₁)

Bragg diffraction.

θ'=90⁰-θ

illinois.edu

Bragg diffraction. Results.*

illinois.edu

Bragg diffraction. Possible origin of the ~10^o peak

illinois.edu